專 欄

          首 頁

          專 欄

          學術報告(Kawamura Shinzo 教授,2019.9.16)

          學術舉辦時間 2019年9月16日 10:00—11:00 學術舉辦地點 廣州大學理學實驗樓314
          主講人 Kawamura Shinzo (河村新蔵) 主題 Chaos on symbolic dynamical systems

          數學學院學術講座  (2019054)

           

           

           

          報告人: Kawamura Shinzo (河村新蔵)

          單位: 日本山形大學(Yamagata University

          職務: 教授

          報告時間: 2019916 上午10:00—11:00

          報告地點: 廣州大學理學實驗樓314

           

          TitleChaos on symbolic dynamical systems

           

          ABSTRACTChaos theory is a branch of mathematics focusing on the behavior of dynamical systems that are highly sensitive to initial conditions. ”Chaos” is an interdisciplinary theory stating within the apparent randomness of chaotic complex systems such as f(z)=z^2+C and the deterministic nonlinear system which can result in large differences in a later state, e.g. a butterfly flapping its wings in Brazil can cause a hurricane in Texas.

           

          Nowadays, in common usage, ”chaos” means ”a state of disorder”. However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney for a continuous map f:X—>X on some metric space X as follows [2]: the dynamical system Σ=(X,f) is said to be chaotic if has the following three properties called chaotic properties.

          (1) The set of all periodic points of is dense in X. (2) is topologically transitive. (3) has sensitive dependence on initial conditions.

           

          We here note that five mathematicians [1] show that if a dynamical system (X; f) satisfies Properties (1) and (2) and the cardinal number of is infinite, then Property (3) automatically holds. Namely two topological properties implies a property of metric space. It was a surprising result.

           

          Now, we restrict the compact metric space to the compact metric Cantor space Σ_n consisting of all infinite sequences of integers between 1 and n, and the function to the backward shiftσ_n. It is well-known that the dynamical system (Σ_n,σ_n) is chaotic in the sense of Devaney. In this talk, we consider a kind of dynamical systems (Σ_A,σ_A) associated with n×n matrix with all entries belonging to {0,1}, whereΣ_A is a compact and σ-invarinat subset ofΣ_n andσ_A is the restriction of σ toΣ_A. We show a necessary and sufficient condition for the dynamical system (Σ_A,σ_A) to be chaotic in term of the propery of the following matrix [3]: A+A^2+…+A^n

          [1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of Chaos, Amer. Math. Monthly, 99(1992), 332-334.

          [2] R. L. Devaney, An intorodunction to chaotic dynamical systems, Second Edition, Addision-Wesley, Redwood City, 1989

          [3] S. Kawamura, H.Takaegara and A.Uchiyam, Chaotic conditions of dubshift on symbolic dynamical systems, preprint.

           

          報告人簡介:河村新蔵,日本山形大學數理科學部教授。1983年畢業于北海道大學,獲得博士學位。1974—2014間,日本山形大學講師,副教授,教授。1988Wales 大學(United Kingdom)留學,2012-至今,北京林業大學客座教授。

          主要研究內容:泛函分析,代數算子,模糊理論,動力系統等,分別在Tohoku Math.J.J.Math.Soc.Japan,Proc.Amer.Math.Soc.Math. Scand等學術雜志上發表學術論文60余篇。

           

           

          上一條:2019年引智講壇之五十 下一條: 化學化工講壇第五十五、五十六、五十七講

          郵編:510006        郵箱:webmaster@gzhu.edu.cn

          通訊地址:廣州市大學城外環西路230號


          移動網站

          • 官方微博

          • 官方微信

          廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

          主站蜘蛛池模板: 成都市| 依安县| 西昌市| 安塞县| 大荔县| 郧西县| 新昌县| 新郑市| 万山特区| 德化县| 巨野县| 南安市| 柳江县| 南江县| 陆良县| 镇雄县| 永顺县| 兰溪市| 台中市| 清水县| 道孚县| 湖口县| 通州区| 通山县| 元江| 什邡市| 交城县| 应城市| 桃江县| 桓仁| 桂林市| 巴楚县| 时尚| 上杭县| 合山市| 天等县| 定结县| 始兴县| 鄱阳县| 嘉兴市| 文成县|